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CONTENTS

❑ Pipe flow

• A pipe is a closed conduit , used for carrying fluids under

pressure.

• It always runs full.

❑ Open Channel Flow

Open channel is a conduit in which liquid flows with a free a

free surface under gravity.
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Fig.1: It shows open channel flow as well as pipe flow (Syphon) for 
irrigation 
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Fig. 2: Schematic representation of Pipe flow and Free surface flow(open channel)
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Reynolds Experiment

hf
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Fig. 3: Straight filament of dye represents laminar flow in (a), wavy filament in (b) 
shows transition nature of flow and fig (c) depicts the dispersing of wavy filament 
with water layer(turbulent)
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Q= Volume of water collected/Time measured using stop watch

Velocity, v = Q/A ; A=  X sectional area of pipe
hf = head loss measured using manometer for several values of v

Sn. Time (t) (s) Volume (m3) Discharge (Q) Velocity, v head loss (m)
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• Laminar flow (Steady uniform incompressible flow in a 
circular pipe, shear stress and velocity distribution)

• Head loss, Hagen Poiseuille equation & Hagen-William 
equation 

Hagen-Poiseuille theory is based on following assumption

1. Fluid follows Newton s law of viscosity .i.e., 𝜏 = µ
𝑑𝑢

𝑑𝑦
…………(1)                       

2. There is no slip of fluid particles at the boundary /wall .i.e., u=0

Fig. 4 : Laminar flow through elementary circular pipe
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Major forces acting on elementary pipe are:
Shear force  at wall and Pressure force at two sections.

Considering all the forces, at steady flow net force on 
control volume must be zero.

σ 𝐹𝑥 = 0

𝑃 − 𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥 𝜋𝑟2 - 𝜏 * 2 𝜋𝑟 𝑑x = 0

Simplifying it we get ,𝜏 = −
𝑑P

𝑑𝑥
×

𝑟

2
………….. (2)

at r=0, 𝜏 = 0

at r=R, 𝜏o = −
𝑑𝑃

𝑑𝑥
×

𝑅

2
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Combining equation (1) and (2)and changing y in terms of r and 
rearranging we get,

𝑑𝑢 =
1

𝜇

𝜕𝑃

𝜕𝑥

𝑟

2
dr …………………………………….(3)

Now integrating equation (3) from 0 to u and r to R at left and 
right hand side respectively. We get,

𝑢 = −
1

4𝜇

𝜕𝑃

𝜕𝑥
𝑅2 − 𝑟2 …………………………….(4)

At center, r=0, u= umax

Thus umax = −
1

4𝜇

𝜕𝑃

𝜕𝑥
𝑅2 ……………………………(5)

Dividing (4)/(5),
u= umax (1-(r/R)2)   ……………………………………(6)

Further, to compute net discharge by integration, we get

Q= 
𝜋

2
umax 𝑅2 …………………………………………(7)



Contd:

Uavg = 
𝑢𝑚𝑎𝑥

2
… … … … … … … … … … … … … . 8

From equation (5) and (8) and rearranging equation for computation of 
pressure difference for integration, we get

− 𝑑𝑃 =
8𝜇ü

𝑅2
dx    , integrating from P1 to P2 and length x1 to x2 and 

subtuting x2-x1 = l, we get

(P1-P2) = 
32𝜇ü𝑙

𝐷2 …………………………………….(9)

Hagen- William equation

V = kCR0.63S0.54 ………………………   (10)
used to calculate velocity of fluid through pipes
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Where, 
K= conversion factor for unit system

= 0.849 for m/s
=  1.318 for ft/s

C= factor for relative roughness, R= hydraulic radius
S= slope of the energy line



Turbulent Flow 

• Turbulent flow, shear stress development, Reynolds stress
• Prandtl mixing length theory, velocity distribution
• Darcy weisbach equation
• Nikuradse experiment 
• Moody's chart, Cole brook- White equation, Swami –Jain 

equation

Turbulence : It results from instability of laminar flow. It is 
random in nature where all quantities vary with time and 
space coordinates.



Fig. 6 : (a) Turbulence from mixing of
smokes (b) Turbulence in a flume
downstream of sluicegate and surface
waves due to instability of flow , (hydraulics
lab , IIT Roorkee). (c) Turbulence from
breaking surface waves in Sunkoshi river
along BP Highway
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Fig. 7 : Velocity variation in quasi steady state

Instantaneous velocity of flow along x, y and z direction
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ഥ𝑢 = 
1

𝑇
0׬

𝑇
𝑢𝑑𝑡

Time average velocity at a point in a fluid flow is given as,



Contd:

Shear stress due to turbulence:

Viscous shear stress 𝜏 = µ
𝑑𝑢

𝑑𝑦

Additional shear developed due to turbulence resulting 
from momentum transport is given by Boussinesq
formula,

𝜏 = 𝜂
𝑑𝑢

𝑑𝑦
, where 𝜂 is coefficient of eddies viscosity

Total shear stress 𝜏 = µ
𝑑𝑢

𝑑𝑦
+𝜂

𝑑𝑢

𝑑𝑦



Reynold’s stress
ഥ𝒖𝟏- ഥ𝒖𝟐 =ua = relative velocity of layer 
A along x direction
Mass transfer per second from B to A , 
M = ρava

This mass attached on layer A and 
moves with relative velocity ua along x 
direction
Thus momentum transfer along x 
direction = ρava ua …………………(1)
Shear stress = ρava ua /a ,

= ρva ua

τ = - ρva ua …………(2) (-ve sign 
signifies that shear acts opposite to 
flow direction)

Contd:

ഥ𝒖𝟏- ഥ𝒖𝟐 =ua

B

ഥ𝒖𝟏

ഥ𝒖𝟐

y

x

A

B

Va l

Fig.8:schematic representation of
fluid layers separated by mixing
length distance l
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Similarly in turbulent flow the fluctuationg velocity u’,v’ are 
responsible for turbulent shear and are the order of ua,va , thus
Reynolds shear stress τ = - ρv’ u’ ………………………(3)

Prandtl Mixing length theory
Mixing length l can be considered as transverse distance between 
two fluid layers such that the lumps of fluid mass from one layers 
could  travel  other layer and attached with them retaining its 
momentum along flow direction.
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Fig.9:



Total shear stress 𝜏 = µ
𝑑𝑢

𝑑𝑦
+ρ𝑙2 𝑑𝑢

𝑑𝑦
2
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Velocity distribution in turbulent flow (Flow resistance equation)

Velocity distribution equation can be derived using relation of

turbulent shear stress(Prandtl mixing length theory) and equation

given by Nikuradse, i.e., l=ky where, k= von karman constant=0.4

(for details ,follow books)

𝜏 = ρ𝑙2 𝑑𝑢

𝑑𝑦
2

Or, du =
1

𝑘

𝑑𝑦

𝑦

𝜏𝑜

𝜌
, where, l=ky and

𝜏𝑜

𝜌
= u* shear velocity



𝑢

𝑢∗
= 5.75 log (y/y’)  ………………………………………..(5)
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On integration both side, we get

u = 
𝑢∗

𝐾
loge (y)+C         …………………………………………………….(4)

Applying boundary condition , at y’ ,u=0 ; y’ is a small

distance from boundary up to which u=0   
Finally we get equation (5)
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Hydrodynamically smooth and rough boundary

Fig.10:Schematic representation of smooth and rough boundary

For smooth surface  ,
𝐾𝑠

𝛿′ ≤ 0.25 , and 𝛿′ = 
11.6𝛾

𝑢∗
;

For rough surface 
𝐾𝑠

𝛿′ ≥ 6.0 ; for smooth boundary, y’ = 𝛿′/107

Where as for rough surface y’= Ks/30
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Now combining equation (5) with smooth and rough surface 

parameters, we get,

𝑢

𝑢∗
= 5.75 log (

𝑦 𝑢∗

𝛾
)  +5.50     …………(6) ( for smooth pipe)

𝑢

𝑢∗
= 5.75 log (

𝑦

𝐾𝑠
)  +8.50            ……….(7)(for rough pipes)

Y’

y
V ~ logy
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If we change the boundary condition to find the value of constant of 
integration, for example at center r=R, u= umax, then e

u = 
𝑢∗

𝐾
loge (y)+C     ………………………………(8)

C=umax -
𝑢∗

𝐾
loge (R)   

On substitution of this constant in above equation we get,
𝑢−𝑢𝑚𝑎𝑥

𝑢∗
= 2.5 log𝑒

𝑦

𝑅
…………………………(9)

𝑢−𝑢𝑚𝑎𝑥

𝑢∗
= 5.75 log10

𝑦

𝑅
…………………….(10)

Velocity distribution equation in terms of mean velocity(follow book 
for detail derivation)
For smooth boundary,
ഥ𝑢

𝑢∗
= 5.75 log10

𝑢∗ 𝑅

𝒗
+ 1.75               ……………………………(11) 
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ഥ𝑢

𝑢∗
= 5.75 log10

𝑅

𝐾𝑠
+ 4.75  …………………..(12) ( for rough 

boundary)

Now on subtraction, eq(6)-(11) and eq.(7)-(12) , we get,

𝑢−ഥ𝑢

𝑢∗
= 5.75 log10

𝑦

𝑅
+ 3.75         ………………(13) ,which becomes 

independent of roughness parameter, can be applicable for 

rough and smooth surface both.

At center of pipe, y=R, thus eqn(13) becomes,

𝑢𝑚𝑎𝑥−ഥ𝑢

𝑢∗
= 3.75       …………………………………….(14)
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Loss of head due to friction in pipe, Darcy-Weisbach equation

From previous section of Hagen-Poiseuille equation derivation,

We have , 𝜏o = −
𝑑𝑃

𝑑𝑥
×

𝑅

2

or, 𝜏o = 
(𝑃1−𝑃2)

𝑙
×

𝐷

4
……………(15)

Dividing (15) both side by 
𝜌𝑢2

2
, we get

𝜏o/ 
𝜌𝑢2

2
= f= (

(𝑃1−𝑃2)

𝑙
×

𝐷

4
)/ 

𝜌𝑢2

2
, where f is dimensionless coefficient 

known as Darcy-Weisbach friction factor
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Finally we get,
𝑃1−𝑃2

𝛾
= 

𝑓𝑙𝜌𝑢2

2𝑔𝐷𝛾
, where 𝛾 = 𝜌𝑔

ℎ𝑓 =
𝑓𝑙𝑢2

2𝑔𝐷
………………………….(16)

In case of coefficient of friction,use 4f in place of f

Also,𝑓 =
4𝜏𝑜

𝜌𝑢2

2

,or 
8

𝑓
= 𝑢

𝜌

𝜏𝑜

But shear velocity𝑢∗= 
𝜏𝑜

𝜌
, thus

8

𝑓
= 

𝑢

𝑢∗
…………………………. ……(17)
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Nikuradse Experiment

Nikuradse did dimensional analysis for pressure drop in
uniform sand coated pipes in order to determine friction
factor of pipe of different roughness in terms of uniform sand
grain roughness height.
∆𝑃

𝑙
= ∅1 𝑢, 𝐷, 𝑘, 𝜌, 𝜇 ,here k= sand grain roughness height

Using Buckingham theorem and taking u,D, 𝜌 as repeating
variables, we get
∆𝑃

𝑙
×

𝐷

𝜌𝑢2

2

= f = ∅2
𝜌𝑢𝐷

𝜇
,

𝐾

𝐷
………………(18)

Thus,

f = ∅2
𝜌𝑢𝐷

𝜇
,

𝐾

𝐷
, some times k/D is written in terms of relative 

smoothness as R/k
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Nikuradse varies pipe D, u,k and measured head loss in sand
coated pipe of constant length and then computed friction
factor f. The entire available data were plotted Stanton in log
scale .

Rough pipe

Fig.11
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Following findings were noted from his graph,
• For smooth surface friction factor becomes independent of 

K/D or R/K and depends on Reynolds number Re.
• On the other hand for rough boundary f becomes 

independent of Re and depends on K/D or R/k
• For laminar flow region f= 64/Re , up to Re=2000
• There exist no specific relationship for 2000 <Re <4000 

(Transition region)
• For fully developed turbulent flow f friction factor depends 

on both Re and K/D or R/K
• Blasius has given equation for smooth pipes in turbulent flow 

as 𝑓 =
0.316

𝑅𝑒1/6 ………………(19)    it is valid up to range 4x103

to 10 5 , after this there is apparent deviation of points from 
straight line.
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• For Reynolds number exceeding 105  can be obtained from 
logarithmic law of velocity distribution for smooth and rough 
pipes as,

For smooth pipe, from equation (11)   
ഥ𝑢

𝑢∗
= 5.75 log10

𝑢∗ 𝑅

𝒗
+ 1.75

Put 𝑢∗= u
𝑓

8
and R= D/2  in above equation , it becomes

1

𝑓
= 2 log10 𝑅𝑒 𝑓 -0.88    …………………(20) 

Here the constant 0.88 slightly vary from lines obtained from graph
So, in order to fit exact with graph lines equation (20) is written as

1

𝑓
= 2 log10 𝑅𝑒 𝑓 -0.8 ……………………..(21)   (for smooth pipes)
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Equation(21) is valid for Re =  5x104 to 4x 107

Similarly for rough pipe, from equation(12)
ഥ𝑢

𝑢∗
= 5.75 log10

𝑅

𝐾𝑠
+ 4.75   

Put 𝑢∗= u
𝑓

8
in above equation

1

𝑓
= 2 log10 𝑅/Ks + 1.68

In order to exact fit in to data ,the constant 1.68 was replaced 
with 1.75
1

𝑓
= 2 log10 𝑅/Ks + 1.75 ……………(22) (for rough pipe)

Which is independent of Reynolds number depicted by several 
horizontal lines for different values of R/Ks
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Equation (21) and (22) may be rearranged by subtracting 2log10

(R/Ks) from(21) and (22)
We get,

1

𝑓
- 2log10

𝑅

𝐾
= 2 log10

𝑅𝑒 𝑓
𝑅

𝐾

- 0.8 ……..(23) for smooth surface

1

𝑓
- 2log10

𝑅

𝐾
= 1.75   ……………………………(24) for rough surface

Equation (23) shows that the left hand side term 
1

𝑓
- 2log10

𝑅

𝐾
is 

function of 
𝑅𝑒 𝑓

𝑅

𝐾

in smooth case, for rough it becomes 

constant,1.75.



A plot of graph using Nikuradse data was used in above 
equation , it is shown below in graph
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Fig.12: Plot of 
1

𝑓
- 2log10

𝑅

𝐾
vs 

𝑅𝑒 𝑓
𝑅

𝐾

𝑓𝑜𝑟 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑙𝑦 𝑟𝑜𝑢𝑔ℎ 𝑝𝑖𝑝𝑒
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From above chart , it is observed that,

𝑅𝑒 𝑓
𝑅

𝐾

< 17  implies hydrodynamically smooth pipe

𝑅𝑒 𝑓
𝑅

𝐾

>400  , implies , hydrodynamically rough pipe

17<
𝑅𝑒 𝑓

𝑅

𝐾

< 400 , implies , behave as transition
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Variation of friction factor for commercial pipes

Fig.13: Plot of{ 
1

𝑓
- 2log10

𝑅

𝐾
} vs 

𝑅𝑒 𝑓
𝑅

𝐾

𝑓𝑜𝑟 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑝𝑖𝑝𝑒
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Nikuradse experimental graphical results is for uniform sand
grain coated pipes, it can not be directly applied for commercial
pipes to evaluate friction factor .

So, in order to use Nikuradse result, friction factor f for 
commercial pipe  f= 2gdh/lu2  

Here h= can be measured from piezometer

h

l
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The obtained friction factor for commercial pipes fc must be 
equal to sand grain coated pipes for particular roughness k
fc = fs….
the value of ks obtained from solving equation 
1

𝑓
= 2 log10 𝑅/Ks + 1.75 , this ks will be the final 

equivalent roughness of commercial pipes at high Reynolds 
number
However, in transition region of Reynolds number, the two 
values obtained for sand grain coated pipes and commercial 
pipes slightly deviates.

Finally Colebrook-White developed a common equation for 
best fit line after plotting all the data from experiment as 
shown in figure 13.
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Colebrook-White equation,

1

𝑓
- 2log10

𝑅

𝐾
= 1.74 – 2.0 log10 1 + 18.7

𝑅

𝐾

𝑅𝑒 𝑓
…… (25)

Simplified form of Colebrook-White equation
1

𝑓
=-2log10

𝑘/𝐷

3.7
+

2.51

𝑅𝑒 𝑓
…………………………(26)

Swami-jain formula

f = 
0.25

log10
𝑘/𝐷

3.7
+

5.74

𝑅𝑒^0.9
^2

Salient features of Moody’s chart

L.F. Moody plotted equation (25) which of the form f versus Re 
for various values of (R/k) as shown in fig. 14



Fig.14: Moody’s chart
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Sudden expansion                                     Sudden contraction                                            

a) Sudden expansion loss hl = 
𝑣1−𝑣2 2

2𝑔

b) Sudden contraction hl = 0.5
𝑣2

2𝑔

c) Entrance loss = 0.5
𝑣2

2𝑔
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d) Exit loss = 
𝑣2

2𝑔

e) Gradual contraction or expansion loss = k 
𝑣1−𝑣2 2

2𝑔

f) Bend loss =  k  
𝑣2

2𝑔

g) Fitting loss = k  
𝑣2

2𝑔
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Pipe flow problems
Deal with six variables in pipe flow problem
i.e., µ,l,D,k,Q,hf

µ,k and l are always known so 3 remaining variables to be found out
So, three types of problem

Known equation is, hf = 
𝑓𝑙𝑢2

2𝑔𝐷
= 

8𝑓𝑙𝑄2

𝜋2𝑔𝐷5 , f from Moody’s chart for Re and 

K/D
a) Compute hf for known µ,l,D,k,Q
determine u, Re, and k/D ; use Moody’s chart for friction factor, for 
this compute hf

b) Compute D for known µ,l,k,Q,hf

assume friction factor f, determine D using D-Weisbach formula, 
find Re, k/D , again find f from chart and tally with assumed f. if its 
same then stop otherwise go for next trial
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C)Determine Q for known µ,l,D,k,hf

Other problems

• Pipes in series and parallel
• Equivalent length of pipe
• Head loss in parallel and in series
• Three reservoir problem
• Syphon problem
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