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d Pipe flow
A pipe Is a closed conduit , used for carrying fluids under

pressure.

It always runs full.

d Open Channel Flow
Open channel i1s a conduit in which liquid flows with a free a

free surface under gravity.



Fig.1: It shows open channel flow as well as pipe flow (Syphon) for
irrigation



Fig. 2: Schematic representation of Pipe flow and Free surface flow(open channel)
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Reynolds Experiment

Reynolds Number

Laminar flow: Fluid moves in <2000 Laminar flow Ay xV
smooth streamlines Re = 22 12000-4000 Transition flow
Turbulent flow: Violent mixing, % >4000  Turbulent flow h, o« v?2
fluid velocity at a point varies "

randomly with time

Transition to turbulence in a 2 in. B
pipe is at V=2 ft/s, so most pipe
flows are turbulent

Lar) h)

Laminar Turbulent
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Fig. 3: Straight filament of dye represents laminar flow in (a), wavy filament in (b)
shows transition nature of flow and fig (c) depicts the dispersing of wavy filament
with water layer(turbulent)
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Q= Volume of water collected/Time measured using stop watch

Velocity, v=Q/A ; A= X sectional area of pipe
hf = head loss measured using manometer for several values of v

Sn. Time (t) (s) |[Volume (m3) |Discharge (Q) [Velocity, v head loss (m)

O | | W N -
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The head loss due to friction in a
given length of pipe is proportional
to mean velocity of flow (V) as long
as the flow in laminar. i.e.,

H/ocV

But with increasing velocity, as the
flow become turbulent the head
loss also varies and become
proportion to V"

H oc Vﬂ

f
Where n ranges from |.75 to 2

T

—

| Log-log plot

hy

—

g bl —
Laminar Transition Turbulent

-

\45"

1

"

Log-log plot for flow in uniform pipe
(n=2.0 for rough wall pipe; n=1.75 for
smooth wall pipe
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» Reynold’s Number(R or Re): It is ratio of inertial forces (Fi) to

viscous forces (Fv) of flowing fluid

Velocity Volume
Mass. ———— e

) .Velocity
Fi Time s Time )

Re = =

Fv a Shear Stress. Area a Shear Stress. Area
pOV pAVV pAVYV pVL VL
T.A p du A & Y a )7 v

Where ;

V is avg. velocity of flow in pipe
v is kinematic viscosity

L is characteristic/representative
linear dimension of pipe. It is

dy L diameter of pipe (circular conduits)
e pVD VD or hyd.raulic radius (non-circular
e 1 o conduits).
» For laminar flow: Re<=2000
- Val f critical
» For transitional flow: 2000<Re<4000 B Reynoidsno.
eynolds no.
» For Turbulent flow: Re>= 4000
Note: For non-circular section, we need to use hydraulic radius (R;) instead
3 of diameter (D) for the linear dimension (L).
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» Hydraulic Radius (R,) or Hydraulic Area A
. o - : R = -
Diameter:|tis the ratio of area of ﬂgw "~ wetted perimeter P
to wetted perimeter of a channel or pipe

For Circular Pipe

For Rectangular pipe

B
BD

R, =

vl

B+2D

R.= VD » 4VR, By replacing D with R,, Reynolds' number formulae
LY vV can be used for non-circular sections as well.

Note: hydraulic Radius gives us indication for most economical section. More
the Rh more economical will be the section.
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* Laminar flow (Steady uniform incompressible flow in a
circular pipe, shear stress and velocity distribution)
* Head loss, Hagen Poiseuille equation & Hagen-William

equation
Hagen-Poiseuille theory is based on following assumption
du
1. Fluid follows Newton s law of viscosity .i.e., T = ua veeereeennne(1)

2. There is no slip of fluid particles at the boundary /wall .i.e., u=0

Fig. 4 : Laminar flow through elementary circular pipe
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Major forces acting on elementary pipe are:
Shear force at wall and Pressure force at two sections.

Considering all the forces, at steady flow net force on

control volume must be zero.
YFx =0

{P—(P+Z—zdx)}nr2 -T *27mrdx =0

: e _ _dap_r
Simplifying it we get , 7 = T XS e, (2)
atr=0,7=0
atr=R,TO=—d—P><5
dx 2
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Combining equation (1) and (2)and changing y in terms of r and

rearranging we get,
1 0P r
du = ;g;dr ........................................... (3)

Now integrating equation (3) from O to u and r to R at left and

right hand side respectively. We get,
1 9P

— _ 1% p2_ 2
u= 4uax(R 1623 EE TR (4)
At center, r=0, u=u__,

__L19P p
Thusu . = o (0155 I (5)
Dividing (4)/(5),
U= U (1-(F/R)?) e, (6)

Further, to compute net discharge by integration, we get
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PPN € - )

avg 2
From equation (5) and (8) and rearranging equation for computation of
pressure difference for integration, we get

_qp =8
R2

subtuting x2-x1 = |, we get

dx ,integrating from P1 to P2 and length x1 to x2 and

32piil
(PrrP) =" e (9)
Hagen- William equation
V = KCRO-63S0->4 e, (10)

used to calculate velocity of fluid through pipes
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Where,
K= conversion factor for unit system
= 0.849 for m/s
= 1.318 for ft/s
C= factor for relative roughness, R= hydraulic radius
S=slope of the energy line



Turbulent Flow

* Turbulent flow, shear stress development, Reynolds stress
* Prandtl mixing length theory, velocity distribution

* Darcy weisbach equation

* Nikuradse experiment

* Moody's chart, Cole brook- White equation, Swami —Jain
equation

Turbulence : It results from instability of laminar flow. It is

random in nature where all quantities vary with time and
space coordinates.



Turbulent ==

Laminar

<

Fig. 6 : (a) Turbulence from mixing of
pigage smokes  (b) Turbulence in a flume
&0 downstream of sluicegate and surface

& waves due to instability of flow , (hydraulics

Turbulence from

breaking surface waves in Sunkoshi river
2. .
' along BP Highway



u [enmy/s]
v [enm/s] =0

t [seconds]

Fig. 7 : Velocity variation in quasi steady state

u(t) = 1 B u’' (1)
vt = ¥ + v (t)
mean turbulent fluctuation

Instantaneous velocity of flow along x, y and z direction
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Time average velocity at a point in a fluid flow is given as,

_ 1T
w=_J, udt

Mean velocity:

Turbulent Fluctuation:

Turbulence Strength:

t+T

_ |
u = Ju(t] dt = ﬁE“i
1

t
continuous record  discrete, equi-spaced pts.

w(t) = u(t)-u :continuous record

w = u -u :discrete points

13
>0
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Shear stress due to turbulence:

. du
Viscous shear stress T = ua

Additional shear developed due to turbulence resulting
from momentum transport is given by Boussinesq
formula,

d : . L :
T=1 —  where n is coefficient of eddies viscosity
dy

du du
Total shear stress T = uy— +1n—
de 77dy
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Reynold’s stress

Uq- U, =u, = relative velocity of Iayeyr
A along x direction

Mass transfer per second from B to A,
M = pav,

This mass attached on layer A and
moves with relative velocity u, along x
direction

Thus momentum transfer along x

direction = pav, u, ...cccceruennnne. (1)
Shear stress = pav, u, /a,

= pva ua
T=-pV U, e (2) (-ve sign

signifies that shear acts opposite to
flow direction)

A U
| F———
ﬁl' ﬁz =Ua >
Vv, |
A 4
| F———
B U,

»
»

X
Fig.8:schematic representation of

fluid layers separated by mixing
length distance |
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Similarly in turbulent flow the fluctuationg velocity u’,v’ are
responsible for turbulent shear and are the order of ua,va, thus
Reynolds shear stress t=-pv' U ..ccceuvvvevrvrennne. (3)

Prandtl Mixing length theory

Mixing length | can be considered as transverse distance between
two fluid layers such that the lumps of fluid mass from one layers
could travel other layer and attached with them retaining its
momentum along flow direction.




fluid mass (p)

F|g9 As can be seen m the figure,

.'.5hEars.trvess:,lt:r‘u.r v = .032( % }2



Contd:

d d
Total shear stress T = uﬁ +pl? (ﬁ) 2

Velocity distribution in turbulent flow (Flow resistance equation)

Velocity distribution equation can be derived using relation of
turbulent shear stress(Prandtl mixing length theory) and equation
given by Nikuradse, i.e., [=ky where, k= von karman constant=0.4

(for details ,follow books)

oot (2):

1d T T .
Or, du = ETy ?" , where, I=ky and /?0 =u* shear velocity
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On integration both side, we get
U *
us=-— 108E (V)HC e

Applying boundary condition, aty’ ,u=0; vy’ is a small

distance from boundary up to which u=0
Finally we get equation (5)

ul =5.75108 (V/Y') coeeeeeceeee e (5)

*
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Hydrodynamically smooth and rough boundary

Fig.10:Schematic representation of smooth and rough boundary

11.6
For smooth surface ? < 0.25 ,and ¢’ = " y;

5’ > 6.0 ; for smooth boundary, y’ = 6'/107
Where as for rough surface y’= Ks/30

For rough surface =
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Now combining equation (5) with smooth and rough surface

parameters, we get,

ul =5.75 log ( yyu*) +5.50  oereienns (6) ( for smooth pipe)
ui =5.75 log (%) +8.50 ... (7)(for rough pipes)

V. logy
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If we change the boundary condition to find the value of constant of
integration, for example at center r=R, U= U, ihene

= % loge (V)+C o, (8)
U *
C=Upax loge (R)
On substitution of this constant in above equation we get,

“tmax 75 log, () [ — (9)
M = 57510810 (2) v (10)

Velocity distribution equation in terms of mean velocity(follow book
for detail derivation)
For smooth boundary,

2 - 5.75l0gg (“ R)+ L (11)

Uy
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T R
ui* = 5.75log, (K—S)+ 475 oviieieeniiennane, (12) ( for rough
boundary)

Now on subtraction, eq(6)-(11) and eq.(7)-(12) , we get,

u—u

= 5.75log, (%)+ 3.75 e, (13) ,which becomes

Uy

independent of roughness parameter, can be applicable for
rough and smooth surface both.

At center of pipe, y=R, thus eqn(13) becomes,
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Loss of head due to friction in pipe, Darcy-Weisbach equation

From previous section of Hagen-Poiseuille equation derivation,

dP _ R
We have,ro-—dx 2
P1-P2) D
or, O=( l )XZ ............... (15)

2

Dividing (15) both side by % , we get

2 P1-P2

known as Darcy-Weisbach friction factor

D, , pu? - ) .
X Z)/ pT , Where f is dimensionless coefficient
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Finally we get,
Pl_PZ_ flpuz

> Zgsz , Wherey = pg
l
= J; g“D ............................... (16)

In case of coefficient of friction,use 4f in place of f

4T 8
Also,f = pug ,or\/;=u Tﬂ
- - (0
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Nikuradse Experiment

Nikuradse did dimensional analysis for pressure drop in
uniform sand coated pipes in order to determine friction
factor of pipe of different roughness in terms of uniform sand
grain roughness height.

ATP =@,(u,D, k,p,u) ,here k=sand grain roughness height

Using Buckingham theorem and taking u,D, p as repeating
variables, we get

AP puD K
l xpuz-f (2)2( D) .................. (18)

Thus,
puD K . . . . :
f=0, ( D) , some times k/D is written in terms of relative

2

smoothness as R/k
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Nikuradse varies pipe D, u,k and measured head loss in sand
coated pipe of constant length and then computed friction
factor f. The entire available data were plotted Stanton in log
scale .

Fig.11
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Following findings were noted from his graph,

* For smooth surface friction factor becomes independent of
K/D or R/K and depends on Reynolds number Re.

* On the other hand for rough boundary f becomes
independent of Re and depends on K/D or R/k

* For laminar flow region f= 64/Re , up to Re=2000

* There exist no specific relationship for 2000 <Re <4000
(Transition region)

* For fully developed turbulent flow f friction factor depends
on both Re and K/D or R/K

* Blasius has given equation for smooth pipes in turbulent flow

as f = g':ll/i .................. (19) itisvalid up to range 4x103

to 10~ , after this there is apparent deviation of points from
straight line.
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* For Reynolds number exceeding 10> can be obtained from
logarithmic law of velocity distribution for smooth and rough
pipes as,

For smooth pipe, from equation (11)

2 - 5.75l0gg (“ R)+ 1.75

Uy

Put u,= U\E and R=D/2 in above equation, it becomes
Jif 210g10(Rey/f)-0.88 .ooveveer (20)

Here the constant 0.88 slightly vary from lines obtained from graph
So, in order to fit exact with graph lines equation (20) is written as

\/if 2 loglO(Re\/?)-O.S .......................... (21) (for smooth pipes)
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Equation(21) is valid for Re = 5x10% to 4x 10’
Similarly for rough pipe, from equation(12)

——57510g10( )+475

Uy

Put u,= u\/é in above equation

1
ﬁz 2 loglo(R/KS) + 168

In order to exact fit in to data ,the constant 1.68 was replaced
with 1.75

%z 2logy(R/Ks) + 1.75 ............... (22) (for rough pipe)

Which is independent of Reynolds number depicted by several
horizontal lines for different values of R/Ks
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Equation (21) and (22) may be rearranged by subtracting 2log,,
(R/Ks) from(21) and (22)

We get,

1 Re\/7
— - Zloglo =2logqg weeee..(23) for smooth surface
Vs K

L 2log,y==1.75 (24) f h surf
7 0810 % = 175 or rough surface

Equation (23) shows that the left hand side term % - 2logqg % is

, R

function of< e§/—> in smooth case, for rough it becomes
K

constant,1./5.
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A plot of graph using Nikuradse data was used in above
equation, it is shown below in graph

Re\[f

) for artificially rough pipe

, 1 R
Fig.12: Plot of\/—7 - 2log;o PRAL (

x|
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From above chart, it is observed that,

(Ref) < 17 implies hydrodynamically smooth pipe

K

<Reé/7) >400 , implies , hydrodynamically rough pipe
K

17<<Re f>< 400, implies , behave as transition
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Variation of friction factor for commercial pipes

Reﬁ

> for commercial pipe

Fig.13: Plot of{ \/—17 - Zloglog }vs <
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Nikuradse experimental graphical results is for uniform sand
grain coated pipes, it can not be directly applied for commercial
pipes to evaluate friction factor .

So, in order to use Nikuradse result, friction factor f for
commercial pipe f=2gdh/lu?
Here h= can be measured from piezometer

h

A 4

A 4

A
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The obtained friction factor for commercial pipes fc must be
equal to sand grain coated pipes for particular roughness k
fc =fs....

the value of ks obtained from solving equation
1

7 21og19(R/Ks) + 1.75 , this ks will be the final

equivalent roughness of commercial pipes at high Reynolds
number

However, in transition region of Reynolds number, the two
values obtained for sand grain coated pipes and commercial
pipes slightly deviates.

Finally Colebrook-White developed a common equation for
best fit line after plotting all the data from experiment as
shown in figure 13.
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Colebrook-White equation,

R
— - 2log10 =1.74-2.0 log, (1 +18.7 K ) ...... (25)

ﬁ Re./f
Slmpllfled form of Colebrook-White equation

1 k/D = 251

\/]_c =-2log1, ( . + Re\f) .............................. (26)

Swami-jain formula
0.25

f=
(1og10(57+7e705))"2

Salient features of Moody’s chart

L.F. Moody plotted equation (25) which of the form f versus Re

fAvrviarintiec vialitaoce AF IR /LY ac chAawa in Fia 1A



ﬂl T T T
BRI B L S R B R R S E S
0.09 __1 Critical 1 V8 HENN | | [
Laminar Ir zone | Transition, ERRR ] | | 1 [IHEN
0.08 - Flow =it Zone == —+—i— i Completely turbulent regime S222i 2SS R S
.ﬁ I bz NI N | i A RN A . L]
1 ) i i, I ] l I I I Hn.os
n.o7 ‘= E 1 H;_'--__ i F—— = T .r - I- ;I \
( Re b N e ' R : 0.0
0.06 | d L T, iy ! { ATRIIE : i
- E L e ! ! HH . —— 0.03
T =1 — S == | == ] i o 1= T R
.- - i - : : { i 1 :I E— (RS
0.05 ] [ 11 Hin B A Y A == man :=#"ﬁ — 0.02
r R i T iiiasi i sios
bt §— N 1 ¥ ...:. T ! 1 t T 0015
0.04 [H-H = N0 S e 0 0 ot . I
IVWRA - R P ] ' , , ' 0.01
! H A R N | 1] :
[, . TT— e — 0.008 |Q
il B i 1 """"_'—',5;_ ]|
003 T e é£ N NN B - | 0.008 g
RS RN Se e S Sms s perssiiies: N
- . - 44 . = 1 | :
0.026 i— i NS mEEaT iiman 2
Tt v 1 SN - t —— 0002 ¢
R - ] L
0.02 [ ) - s e iy ] LT 3
| | oy — el ] - a
I RN ST mm s - 0.0006
| | g e, |
il [ 1 SN i - . 0.0004
0.015 [t ‘1T T e (ft) & {mm) T —1 +
TTTTT Riveted steel ~0.01 3 [T i Singg o . ' 3 0.0002
T Concrete ~0.001-0.01 0.3-3 M 1 S — f h'i.'ﬁ' -1 |
Wood ~0.001 03 MU L Pt = 0.0001
Cast iron 0.00085 0.26 I LI L + 1l
Galvanized iron 0.0005 018 Smooth pipes — | = — 0.000,05
0.01 i+~ Wrought iron 0.00015 0.046 | < 0.000,001 L
T i 0.000005 0.0015 ¢ = 4 -+
0,006 [L L1 1|~ Orawn tubing T T Etnase 4 0.000,005 r 4
0.008 LLLL 1 1t 0.000,01
T 9 2 3 4567 9 2 3 4567 9 2 3 46567 8 2 3 4567 9 7 3 4567 9
10° 104 10° 108 107 108

Fig.14: Moody’s chart

Reynolds number Re



Contd:

Head Loss in Pipes

» Total Head Loss=Major Losses+ Minor Losses

» Major Loss: Due to pipe friction

Water flow .
A X X o 4 . X X X Bo
Shghtly slowed

magnified pipe wall

- 200009909000 -
+ 900009000000 -
2esessessess:

The effects of friction with the pipe walls on “Tayers™ of meleoules

Kegrom of haSbenw

e ———— e ® v v T - - e

_3\ f

[ / e R T ==
e ) w,
0, };_w)g)}b\\ == >
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Sudden expansion Sudden contraction

(v1-v2)?

a) Sudden expansion loss hl =

2
b) Sudden contraction hl = O.SZ—g

2
c) Entrance loss = 0.5—
29



Contd:

. v?
d) Exit loss = —
29

(v1-v2)?
29

e) Gradual contraction or expansion loss = k

1.72
f) Bend loss = k —
29

2

_ v
g) Fitting loss = k 29
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Pipe flow problems

Deal with six variables in pipe flow problem

i.e., wl,D,k,Qh;

W,k and | are always known so 3 remaining variables to be found out
So, three types of problem

flu® _ 8f1Q*
2gD  m2gD5 '

Known equation is, h= f from Moody’s chart for Re and

K/D

a) Compute h¢for known w1,D,k,Q

determine u, Re, and k/D ; use Moody’s chart for friction factor, for
this compute h

b) Compute D for known p,1k,Q,h;

assume friction factor f, determine D using D-Weisbach formula,
find Re, k/D, again find f from chart and tally with assumed f. if its
same then stop otherwise go for next trial
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C)Determine Q for known p,1,D,k,h,

Other problems

* Pipesin series and parallel

« Equivalent length of pipe

* Head loss in parallel and in series
* Three reservoir problem

* Syphon problem
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